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This paper describes the absorbance properties of pigments in disordered films. The fluorescence quenching
of pigment systems at low concentrations are usually attributed to the presence of so-called statistical pairs.
We show that, if line broadening mechanisms are taken into account such as homogeneous and inhomogeneous
broadening and statistical distribution of distances between the pigments, the number of potential quenchers
decreases dramatically, because all of these effects lead to an increase of the dipole strength of the lowest
excitonic state of a dimer. We also show, on the basis of Monte Carlo calculations on assemblies of pigments,
that spectral effects beyond a general broadening of the spectrum will not be observed, even for concentrated
systems, where a larger number of these statistical pairs may assumed to be present.

1. Introduction

One of the interesting questions of photosynthesis is how
antenna systems are able to keep an excited state from degrading
or losing its energy by fluorescence, before the excitation is
delivered to the reaction center, where it can effectively be used
for initializing electron-transfer reactions.

In natural photosynthetic systems, the chromophores are
usually embedded in a protein. One of its effects is that the
pigments are held in place at specific positions and orientations.
The concentration of chromophores in such systems can be quite
high. In LHCII, for instance, with 12 chlorophyll pigments in
a box of approximately 4 nm size, the average distance between
the pigments ranges from 1 to 2 nm.1 This amounts to a
concentration of≈0.2 M, whereas concentration quenching in
dye2 and chlorophyll solutions3,4 starts to play an important role
at much smaller concentrations of 10-3-10-4 M. Nevertheless,
LHCII is capable of preserving the excited state on chlorophyll
a for periods up to several nanoseconds.5

Embedding the pigments in a polymer matrix mimics the
protein pigment complexes. These systems can be used profit-
ably to study energy transfer,6,7 because the clustering behavior
that chromophores such as chlorophylls or porphyrins often
display in water and organic solvents can be avoided. However,
matrixes such as poly(vinyl alcohol) do not influence the relative
positions and orientations of the chromophores, whereas in
photosynthesis, the proteins do. As a consequence, fluorescence
quenching at higher concentrations cannot be avoided.

In these random systems, the mechanism of fluorescence
quenching remains fundamentally a mystery.4,8 It is generally
assumed that excitations are transferred to so-called “statistical
pairs”, excitonically coupled dimers with random relative
orientation, by a Fo¨rster transfer mechanism and that these
dimers somehow avoid fluorescence and back-transfer of the
excitation.

Because the initial steps in photosynthesis, the harvesting of
light and the subsequent transfer of the excitation to a reaction
center, are extremely important in reaching its high overall
efficiency, a thorough understanding of the underlying mech-
anisms would be very helpful in the construction of artificial
antenna systems.9

In a recent paper, Knox8 argued that on average a statistical
pair has a smaller oscillator strength for the lowest excitonic
transition than for the highest, leading to a blue-shifted spectrum
for a collection of statistical pairs. This is not observed; in
general, the absorption spectrum changes little even for relatively
high concentrations, and if larger changes are observed, it is
most likely due to ground-state interaction effects at higher
concentrations.10

In this paper, we argue that the effect is even smaller than
Knox calculated, for two reasons: first the inclusion of
inhomogeneous broadening as diagonal disorder in the exciton
Hamiltonian leads to an increase of the oscillator strength of
the lowest excitonic state, even for a completely dark state, and
second taking a distribution of positions for the monomer
comprising a dimer also has a broadening effect. Together these
effects lead to a slightly broadened absorption spectrum and
not to a blue-shifted spectrum.

Inclusion of a distribution of distances does, however, point
to a possible mechanism for fluorescent concentration quench-
ing. On the basis of the nearest neighbor distribution function
derived by Hertz,11 we argue that around every pigment there
is likely to be at least one pigment pair of which the pigments
are closer than 1 nm within a sphere determined by the Fo¨rster
radiusRF. Such a dimer will not likely be a dimer in which the
pigments have random orientations, because a more parallel
configuration will be favored because of steric hindrance. For
chlorophylls, bacteriochlorophylls, and porphyrins, such parallel
relative orientations can easily lead to close lying charge transfer
(CT) states. Evidence for this can be found in large positive
first-order contributions (red shifts) to the Stark spectrum of
for instance the special pair in the reaction center or LH antenna
systems.12-14 Although CT states are usually slightly higher in
energy than the covalent states because of the “Coulomb
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penalty”, which has to be paid for putting an extra electron on
a pigment,15 in polar media, this is offset by the lowering in
energy such a system can get by means of its own reaction
field.16-20 These CT states are obviously dark, because they
have no transition dipole moment to the ground state, and for
the same reason, they cannot transfer their energy to another
chromophore by means of a Fo¨rster type transfer mechanism.
Hence, they can effectively quench the fluorescence of a
concentrated solution of pigments.

In this paper, we present a theoretical study of the absorption
spectrum due to excitonic interactions between pigment mol-
ecules located at random positions and with random orientation.
In the first part of the paper, we will follow Knox8 and consider
dimers only, but we do include inhomogeneous as well as
homogeneous broadening and allow for random positions as
well. We will give an analytic derivation of Knox’s result and
show that inclusion of the above broadening mechanisms
decrease the blue-shift effect alluded to above. We will also
show explicitly that even for a dimer with a dark low excitonic
state diagonal disorder will make the lowest transition allowed.

In the second part of the paper, we will consider the
absorption spectrum that results if we take a large random
collection of pigments. It can then be showed that only a general
broadening of the absorption spectrum will be observed at higher
concentrations but that even at moderate concentrations a large
enough concentration of quenchers is present so that every
pigment is close enough to such a quencher to lose its energy
by Förster transfer, rather than fluorescence. Observable effects
in the absorption spectrum only occur when the pigments get
so close that the assumption of random orientations is no longer
justified.

2. Description of the System

The dimeric system consists of two two-level monomers, of
which we only consider the relative position and orientation of
the transition dipole moments. The vector connecting the
positions of the transition dipoles is denoted byRB, and we define
a dimer frame by letting thez-axis point along theRB direction.
Furthermore, we chose the dimer frame such that the transition
moment of pigment 1 is in thexz plane. The polar angle of
pigment 1 is given byθ1, its azimuth is by definition zero, and
the polar angle and azimuth of the transition dipole of pigment
2 are given byθ2 andφ, respectively. The structure is displayed
in Figure 1.

The Hamiltonian describing the single excitations of the
excitonically coupled dimer is given by the matrix

The energiesε1 andε2 are the excitation energies of pigment
1 and pigment 2, respectively, andV is the excitonic interaction

Changes in the ground state energy and doubly excited state
are neglected throughout this paper. This is justified becauseV
, ε1,2, and such changes are second order inV/ε1,2. The
magnitude of the interaction depends on the transition dipole
moments and the distance between the pigments. We use the
quantity

with µ in D andR in nm, to scale the interactions. For theQy

transition of chlorophyll for instance, the transition moment is
approximately 5.6 D, so that at a distance of 1 nm, the
interaction energyV0 between two chlorophyll molecules is
approximately 160 cm-1.

The interaction can furthermore be modified by the relative
dielectric constantε, which for most systems is between 1 and
2.

We can now express the interaction energy in terms of the
angles defined in Figure 1:

For random systems, the anglesθ1, θ2, andφ and the distance
R between the pigments are not fixed but can vary according
to a distribution functionN(R, θ1, θ2, φ). Furthermore, the
excitation energies of the monomers are also subject to some
variation. For those parts of this paper where we take this
diagonal disorder into account, we will assume that these values
can be taken from a Gaussian distribution around the unper-
turbed valueε0, with varianceσ. Typical values forσ at room
temperature are between 100 and 300 cm-1.4,6-8

We are primarily interested in the absorption spectrum of
this dimer and the oscillator strength of the lowest excitonic
state. It is rather straightforward to diagonalize the Hamiltonian
(2.1) and to find the excitonic states and transition moments to
these states.21 The eigenvalues are

We can write the corresponding excitonic states as

where|i〉 denotes the state where the excitation is on monomer
i and |(〉 denote the excitonic states.

The quantitiess andc can be found from

with

Figure 1. Positions and orientations of the two transition dipole
moments in the dimer frame.

H ) (ε1 V
V ε2

) (2.1)

V ) 1

4πε0εR3
µb1‚(1 - 3

RBRB
R2 )‚µb2 (2.2)

V0 ≈ 5.035
µ2

εR3
cm-1 (2.3)

V ) V0[sin θ1 sin θ2 cosφ - 2 cosθ1 cosθ2] (2.4)

ε( ) 1
2
[ε1 + ε2 ( x(ε1 - ε2)

2 + 4V2] (2.5)

|+〉 ) c|1〉 + s|2〉 and |-〉 ) -s|1〉 + c|2〉 (2.6)

s ) t

x1 + t2
and c ) 1

x1 + t2
(2.7)
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The transition moments to the excitonic states can then be
written as

The intensities of the transition are determined by the square
of these quantities, under the assumption that the dimer can
occur in any orientation with equal probability. We can write
these intensities as

with θ, the angle between the original transition moments, given
by cosθ ) cosθ1 cosθ2 + sin θ1 sin θ2 cosφ.

This gives us the spectrum for every possible orientation and
relative position of the pigments. To find the observed spectrum,
we have to average this with the distribution functionsN(R, θ1,
θ2, φ) and the distributions of the pigment energies. We will
calculate the probabilityP(I, V) of finding an intensityI at
frequencyV. This quantity can be found from the expression

The distributionf is given by

Equation 2.11 forms the basis of all our calculations. The
absorption spectrum can be found as

Homogeneous broadening, the result of the finite lifetime of
each state, can be introduced in this description by replacing
the δ(V - ε() functions by the desired line profile.

Distribution Functions. The distribution functions we will
use are all derived fromN(R, θ1, θ2, φ). We first write it in the
form

whereW(R) dR is the probability density for finding the nearest
neighbor betweenR and R + dR and NR(θ1, θ2, φ) is the
probability density for finding a set of angles (θ1, θ2, φ), given
that the distance of the chromophores isR.

An expression forW(R) was derived by Hertz11,22 and can
be written as

where n is the particle density.R0 (in nm) is related to the
molarity M of the pigment concentration by

We can use this to estimate the number of quenchers in a given
solution. Let us assume that a pair of pigments can act as a
quencher when the distance is smaller than 1 nm. The probability
of finding such a pair is given by

with R0 in nm. Together with eq 2.16, this means that for a
molarity of 10-3 approximately 2.5× 10-3 pigment pairs are
found that are closer together than 1 nm.

Energy can be transferred at much lower concentrations, as
evidenced by depolarization measurements on pigments in films,
which show energy transfer at concentrations of 10-6-10-7

M.6,7,23 This also defines a radiusRF, related to the Fo¨rster
radius, of a sphere around an excited particle in which other
pigment particles must be found to transfer the energy to. It is
obvious that at concentrations 103 higher than these every
excited pigment will at least have a few quenching pairs within
its Förster radius. Because these pairs only make a small
contribution to the total number of pigments, it is not surprising
that effects on the absorption spectrum are small.

The inverse of the indefinite integralF(R) of W(R) is given
by

This makes it simple to generate the distributionW(R) from a
distribution of uniform deviatesF.24 We will use this in the
simulations in section 4.

The angular distributionNR(θ1, θ2, φ) is more complicated.
In general, we can state that for largeR all orientations are
possible, an assumption used by Knox8 to calculate the spectra.
For shorter distances, it obviously depends on the shape of the
molecules what the preferred relative orientations are. For planar
molecules like (bacterio)-chlorophylls and porphyrins, a shifted
coplanar orientation (“slipped deck of cards”) appears to be
common.7 This can be introduced as a restriction onθ1 - θ2,
cf. Figure 1, which puts the transition dipoles in more or less
parallel planes.

In the next section, we first rederive Knox’s result by an
analytical procedure.

3. Spectral Profile of Statistical Pairs

In this case, we make a number of additional assumptions.
The excitation energiesεi of both pigments are equal toε0.
Furthermore, the distance between the pigments is fixed at some
valueRh, and for that value, all possible orientations are equally
probably. The distribution function for positions and angles then
becomes

Note, however, that there is no conceivable limit in which eq
2.15 reduces to a delta function, except for the “close packing”
situation, in which case the other assumptions are hardly justified
and singling out a pair of pigments from the closely packed
cluster to calculate the absorption spectrum of the complete
systems makes no sense. In other words, we do not expect the
absorption spectrum of the complete system to even remotely
resemble the absorption spectrum of a collection of random

t )
ε2 - ε1 + x(ε1 - ε2)

2 + 4V2

2V
(2.8)

µb+ ) cµb1+ sµb+ and µb- ) -sµb1 + cµb2 (2.9)

I+ ) µ2[1 + 2sccosθ] and

I- ) µ2[1 - 2sccosθ] (2.10)

P(I, V) ) 1
2∫0

∞
dR∫-1

1
d cosθ1∈ ∫-1

1
d cosθ2∫0

2π ×

dφ N(R, θ1, θ2, φ)∫-∞

∞
dε1 ∫-∞

∞
dε2 f(ε1) f(ε2) ×

[δ(V - ε+)δ(I - I+) + δ(V - ε-)δ(I - I-)] (2.11)

f(ε) ) 1

x2πσ2
exp[-(ε-ε0)

2/
2σ2] (2.12)

〈I〉V ≡ IV ) ∫ dI IP(I, V) (2.13)

N(R, θ1, θ2, φ) ) W(R) NR(θ1, θ2, φ) (2.14)

W(R) ) 4nπR2 exp[-4/3(nπR3)] ≡ 3
R2

R0
3
e-R3/R0

3
(2.15)

R0 ) ( 3 × 1024

4π 6.025× 1023)1/3

≈ 0.73 M-1/3 (2.16)

∫0

1
dR W(R) ) 1 - e-1/R0

3
(2.17)

R ) ( 3
4πn

ln
1

1 - F)1/3
(2.18)

N(R, θ1, θ2, φ) ) 1
8π

δ(R - Rh) (3.1)
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pairs. The calculation is still useful, because it can provide us
with an estimate of the number of potential quenchers for this
situation.

In addition, eq 2.5 simplifies to

and t, eq 2.8, becomes

Finally, R in eq 2.4 has to be replaced byRh.
The absorption intensities reduce to the following expressions:

The intensities and excitation frequencies of course still depend
on all the angles involved in the problem.

Equation 2.11 also becomes simpler:

In the Appendix, we show that this integral can be evaluated
exactly and be expressed in an elliptic function. In the Appendix,
we also derive an analytical expression for the functionI(V),
which is shown to be equal to

and

In these expressions, the function asinh is the inverse hyperbolic
sine.

In Figure 2, we show this spectrum for a pair of chlorophyll
a molecules at a distance ofRh ) 1 nm. It is identical to the one
calculated by Knox8 by Monte Carlo techniques.

The spectrum shown in Figure 2 is in fact built of stick
spectra. The effects of homogeneous broadening can be taken
into account by dressing the sticks with a Gaussian, or
Lorentzian, line shape. In that case, we replace the termsδ(V
- ε() by the appropriate line shape function and subsequently
perform the integrations numerically. Homogeneous broadening
is related to the lifetime of the chromophores, which for
chlorophyll a in solution was measured to be≈5 ns, and the
width of the phonon wing, which is the main contribution. We
estimate the homogeneous line width to be 100 cm-1, at room
temperature. This has important consequences for a possible
quenching mechanism based on these statistical pairs. The
dashed spectrum in Figure 2 shows the homogeneously broad-
ened spectrum of statistical pairs.

Quenching is supposed to take place by the following
mechanism: an excited monomer loses its energy by the Fo¨rster

transfer mechanism to a nearby statistical dimer. This cannot
be to the lower excitonic state of that dimer because that state
is supposed to be dark and thus cannot have a transition dipole
moment and can consequently not interact with the monomer.
The upper excitonic state of the dimer thus gets excited, within
a very short time loses some of its energy through interaction
with the surrounding medium, and reduces to the lower excitonic
state. If that state is indeed dark, fluorescence will be quenched.
Within this context, dark of course means that it will lose its
energy some other way, before it has a chance to fluoresce.
This is not easy to quantify on the basis of the above picture,
but let us assume all states in the lower 10% of the above
spectrum are sufficiently dark to act as quenching states. A
smaller number will certainly not give enough dimers with the
correct geometry in the near neighborhood of our excited
pigment, as our calculations of the previous section show.

What is not visible in the above spectrum is that it results
from pairs of lines and not from uncorrelated single lines.
Moreover, these lines are symmetrical with respect to the
unperturbed excitation energyε0. That means that the upper
excitonic state corresponding to a lower excitonic dark state
must occur at the very blue edge of the spectrum.

Apart from the distance and relative angles between pigments,
Förster transfer also depends on the overlap between the
emission spectrum of the donor and the absorption spectrum of
the acceptor. The emission spectrum of a pigment is usually to
the red of the absorption spectrum because of the Stokes shift,
but even if we assume that the Stokes shift is zero, the amount
of overlap between a line with width 100 cm-1 at position 14925
cm-1 and a similar line at 15200 cm-1 is negligible: for
Gaussian lines the overlap factor is 0.02.

As a consequence, we may state that even if the lower
excitonic state of a statistical dimer can be considered dark an
excited monomer has no possible mechanism to transfer its
energy to the higher excitonic state of that same dimer.

It is not immediately obvious that there could be no quenching
dimers with small exciton splitting, but a moments reflection
shows that the spectrum in Figure 2 gives also the correlation
between lower state dipole moment and excitonic splitting: the
lower half of the spectrum is the lower state dipole moment
squared and the distance to the center of the spectrum just half
the excitonic splitting, so small transition dipoles correlate
directly with large exciton splitting.

Often dimers have a spectrum that is red-shifted compared
to the monomer spectra, which would of course be helpful for

ε( ) ε0 ( V (3.2)

t ) |V|
V

) sign(V) (3.3)

I+ ) µ2[1 + t cosθ] and µ2[1 - t cosθ] (3.4)

P(I, V) ) 1
16π∫-1

1
d cosθ1∫-1

1
d cosθ2 ∫0

2π ×
dφ [δ(V - ε+)δ(I - I+) + δ(V - ε-)δ(I - I-)] (3.5)

I(V) ) µ2[12(V - ε0) + (ε0 + V0 - V)
asinhx3

2 x3 ]
for |V - ε0| < V0 (3.6)

I(V) ) µ2[12(V - ε0) -
V - ε0

|V - ε0|x(V - ε0)
2 - V0

2

3
+

ε0 + V0 - V

2x3 (asinhx3 - asinhx(V - ε0)
2

V0
2

- 1)]
for V0 < |V - ε0| < 2V0 (3.7)

Figure 2. Spectrum of an ensemble of statistical pairs. The properties
of theQy transition of chlorophyll a pigments were used to model this
spectrum. The distance between the pigments is 1 nm, their transition
dipole moment 5.6 D, and the transition energy was taken to be 14 925
cm-1 (670 nm). The dashed spectrum is obtained by giving every
realization a homogeneous width of 100 cm-1.
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energy transfer from monomers, because it increases the overlap
between monomer emission and highest excitonic state absorp-
tion, but on the other hand, the red shift can be taken as
indicative for the coupling with a CT state,25-27 so that those
dimers which do get a considerable overlap are also those with
the most charge-transfer character.

A possible way out of this dilemma is the introduction of
inhomogeneous broadening mechanisms: inhomogeneous broad-
ening is usually much larger than homogeneous broadening and
could easily give us monomers which spectra overlap with upper
excitonic states, but we will show in the next section that
inhomogeneous broadening also has the effect of increasing
lower excitonic state dipole strengths.

4. Inhomogeneous Broadening Effects

The starting point is again eq 2.11, but now we concentrate
first on the integrals over the distribution functionsf(ε). For a
given set of angles and positions, the intensityI(V) can be written
as

We introduce the following notation:28

The new transition dipoles can then be written as

and the corresponding energies are

Furthermore a straightforward calculation gives the distribution
of Σ and∆ as

The introduction of this result in eq 4.1 and subsequently
performance of the integration ofΣ gives

For ∆ ) 0, we recover the stick spectrum; for not too large
values of∆, we can approximate the integral by

In Figure 3, we have plotted the spectrum resulting from eq
4.6 as well as from (4.7) for an inhomogeneous broadening of
100 cm-1. We took the special case where the transition dipoles
are in the same direction and perpendicular to the vector
connecting them, so that for the unperturbed system, the lower
excitonic state is completely dark. We note that the spectrum
can be reasonably well approximated by eq 4.7, that the exciton
splitting is not equal to 2V but to 2(σ2 + V2)1/2, which differs
substantially from 2V, and finally that the lowest excitonic state
acquired a considerable amount of dipole strength. Realistic
values ofσ are often higher. Forσ ) 200 cm-1, we find that
the lower excitonic state caries about 10% of the total oscillator
strength. The effect of exchange narrowing that inhomogeneous
broadening by diagonal disorder also shows is for a dimer not
of great relevance.

In Figure 4, we show the spectrum resulting from averaging
expression (4.6) over all possible orientations of the transition
dipoles. As in Figure 2, the distance between the pigments is
taken to be fixed at 1 nm. We note that in this case the diagonal
disorder also has as one of its main effects a considerable
increase in the intensity of the lower excitonic state.

Thus, we may state that although the introduction of diagonal
disorder undoubtedly will increase the possibility of energy
transfer from a monomeric pigment to the higher excitonic state
of a quenching statistical dimer a side effect is, however, that
the quenching properties of such a dimer are decreased.

Although the spectral effects of excitonic coupling on the
systems studied so far are quite distinctive, ranging from
observable excitonic splitting, as in figures 3, and 4 to
enhancement of the red side of the spectrum for higher values
of (in)homogeneous broadening, we do not expect to observe
those effects in real systems. After all, the proportion of
statistical pairs is small to begin with compared to the total
number of absorbers, at least at low concentration, and
furthermore, the distribution of distances also obscures the effect.
Of course, when the concentration gets higher, the number of
statistical pairs increases, but interaction with other pigments
then also starts to play a role, because the likelihood of finding
a trimer with relative distances smaller than 1 nm then also
becomes appreciable. In the final section, we show some
calculations of spectra of more concentrated systems by taking
all interactions into account, here we show that even for ordered
pairs with a distance distribution the specific spectral effects
are diminished. To that end, we take the configuration described
in the caption of Figure 3, but we vary the distance according
to the Hertz distribution, eq 2.18.

The most probable distance for a given particle density is

and we choose the values for the simulation such that this
distance is 1 nm. This accounts for the variance still found in
statistical pairs within quenching distance of an excited mono-
mer.

We note that this differs very little from the average distance
for a given density, which can be written as

I(V) ) 1
2∫-∞

∞
dε1 ∫-∞

∞
dε2 f(ε1) f(ε2) [I+δ(V - ε+) +

I-δ(V - ε-)] (4.1)

∆ ) 1
2
|ε2 - ε1| and Σ ) 1

2
|ε2 + ε1| (4.2)

I( ) µ2[1 ( V

x∆2 + V2
cosθ] (4.3)

ε( ) Σ ( x∆2 + V2 (4.4)

P(Σ, ∆) ) 1

πσ2
exp[-(ε0 - Σ)2/σ2] exp(-∆2/σ2) (4.5)

I(V) ) µ2

2xπσ2
∫-∞

∞
d∆ e-∆2/σ2[exp[-(ε0 - V +

x∆2 + V2)/σ2] (1 + V

x∆2 + V2
cosθ) + exp[-(ε0 - V -

x∆2 + V2)/σ2] (1 - V

x∆2 + V2
cosθ)] (4.6)

I(V) ) 1
2

µ2 exp[-(ε0 - V + xσ2 + V2)/σ2] ×

(1 + V

xσ2 + V2
cosθ) + 1

2
µ2exp[-(ε0 - V -

xσ2 + V2)/σ2] (1 - V

xσ2 + V2
cosθ) (4.7)

Rh ) (2/3)1/3R0 ≈ 0.87R0 (4.8)
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In Figure 5, we show the spectrum resulting from a simulation
where the distance was varied in accordance with the Hertz
distribution, and where, in addition, we assumed a homogeneous
line width of 100 cm-1 and an inhomogeneous width of 200
cm-1. Also included is the spectrum of a monomeric pigment
with the same broadening parameters. The dimer spectrum has
become almost symmetrical and compared with the monomer
spectrum is shifted toward the blue and slightly broader. Again
there is considerable dipole strength at the red end of the
spectrum.

In a subsequent paper,10 we analyze spectra of erythrosin B
in PVA film at varying concentrations, where apart from
broadening a small blue shift can be observed at higher
concentrations and which can therefore be attributed to the effect
described here, although formation of oligomers can also
contribute significantly.

The monomer spectrum displayed in Figure 5 was found by
direct convolution of the Gaussian corresponding to the
homogeneous broadening, and the Gaussian distribution of
excitation energies. The result of this convolution is a Gaussian
with width (σ2 + σh

2)1/2, where σh is the variance of the
homogeneous Gaussian. The dimer spectrum is broader, even
though there is a small exchange narrowing effect because of
the distributed positions.

5. Spectral Effects

From the results of the previous section, it could be concluded
that the spectral effects of the presence of statistical pairs is
considerable. In all cases studied, the spectrum is asymmetric
and there is a considerable blue shift, even if homogeneous and
inhomogeneous broadening are included and if the distance
distribution is taken into account. However, we also showed
that the number of statistical pairs present in low concentration
solution may be large enough to act as potential quenchers if
an additional dark state is assumed, but the overwhelming
majority of pigments will still occur in monomeric form and
dominate the absorption spectrum.

The spectrum displayed in Figure 5 could be interpreted as
the absorption spectrum of a collection of statistical pairs with
preferred orientation. The spectral effects shown there, a blue
shift, and extra broadening because of variations in relative
positions could be observed for higher concentrations. However,
for an average distance of 1 nm, the overall concentration is
approximately 0.6 M, and consequently, a larger number of
pigments can be found in the immediate proximity of a statistical
dimer, thus rendering the statistical pair picture incomplete. In
fact, on average, a third neighbor will be found at a distance of
x2 ≈ 1.4 times the nearest neighbor distance (cf. Figure 6),
which means that for a random system at a density such that
the average distance is 1 nm the interaction strength with the
next nearest neighbor, which is about 40% that of the nearest
neighbor interaction, cannot be neglected. We could of course

Figure 3. Disordered dimer spectrum calculated from eq 4.6 (solid
line), and approximation eq 4.7 (dots). Parameters were chosen as
follows: θ1 ) θ2 ) π/2, φ ) 0, µ ) 5.6 D, R ) 1 nm, andσ ) 100
cm-1. The geometry of the dimer gives a lower excitonic state with no
dipole strength in the absence of disorder. The full-width at half
maximum (fwhm) of the monomer spectrum is 2.355σ ≈ 236 cm-1.

Figure 4. Inhomogeneously broadened spectrum of a statistical pair
of chromophores. For the solid line, we used an inhomogeneous line
width of 100 cm-1; for the dotted line, 200 cm-1 was used. The latter
is a more realistic value.

〈R〉 ) R0∫0

∞
dx x1/3e-x ) R0Γ(43) ≈ 0.89R0 (4.9)

Figure 5. Spectrum of a statistical pair with fixed parallel orientation
but positions distributed according to the Hertz distribution, eq 2.15.
The most probable distance is chosen as 1 nm, and homogeneous (100
cm-1) and inhomogeneous (200 cm-1) broadening are included. Also
shown (dotted) is the spectrum of a collection of monomers with the
same values of homogeneous and inhomogeneous broadening param-
eters.

Figure 6. Normalized nearest neighbor distribution for randomly placed
particles in a box. Also shown (dotted) is the Hertz distribution, eq
2.15, forR0 )1.15 nm. The thin solid line is the probability of finding
a third pigment at distanceR from the center of a nearest neighbor
pair.
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consider trimers or tetramers, but that is hardly useful. It cannot
be expected that they have a lowest excitonic state that is dark,
and the ground state interaction will make it very unlikely that
these oligomers are statistical in nature.

In this section, we show some results that could be found if
systems were indeed completely random.

The simulations were done on 20 randomly positioned and
oriented pigments in a cubic box of length 5 nm. The value of
R0 for this setup if 1.15 nm, so that the average distance and
the most probable distance between nearest neighbors is≈1
nm. In Figure 6, we show the nearest neighbor distribution
function for this situation. It differs slightly from the Hertz
distribution, because of boundary effects: for particles near a
wall, there are fewer neighbors. The figure shows that this does
not have appreciable effects on the most probable nearest
neighbor position. Obviously, this could be improved using
periodic boundary conditions, but for our purposes, that is hardly
worthwhile.

For a large number of realizations (N ) 104), we calculated
the average absorption spectrum of such a system by calculating
all excitonic interaction energiesVij (cf. eq 2.2), diagionalizing
the resulting Hamiltonian, and subsequently finding all excitonic
states and their transition dipole moments. The result is displayed
in Figure 7 for zero inhomogeneous broadening and for an
inhomogeneous broadening of 100 cm-1. We note that for zero
inhomogeneous broadening there appears to be a large mono-
meric component to the spectrum, as evidenced by the sharp
peak at the unperturbed transition frequency. There is no visible
evidence for an enhancement at the blue side of the spectrum
because of the presence of statistical pairs.

It can be inferred from Figure 6 that roughly half of the
nearest neighbors at the given particle density are closer than 1
nm. To see if steric hindrance has observable effects on the
absorption spectrum, we also performed a simulation where all
particles closer than 1 nm are given the same orientation. The
results are displayed in Figure 8 for a homogeneously broadened
spectrum only. We used a small homogeneous broadening (10
cm-1), mainly to speed up the convergence of the Monte Carlo
calculation. Even for this small broadening, the enhancement
on the blue side can hardly be noticed. Simulations with larger
homogeneous broadening or additional inhomogeneous broad-
ening do not show any difference with the spectra calculated
without taking steric hindrance into account.

These results can easily be understood on the basis of the
particle distribution function. As can be inferred from the results

of the previous sections, a blue-shifted spectrum or enhancement
of the blue side of the spectrum occurs for dimers with a
preferred parallel orientation of the dipole moments or statistical
pairs, where the contribution of blue-shifted spectra is still
predominant over the red-shifted spectra. A direct calculation
shows that even for the relatively high concentrations considered
here the number of pairs of pigments closer than 1.5 nm (for
larger distances, the excitonic interaction becomes too small to
give appreciable effects) still does not exceed more than 10%
of the total number of pairs. Even if we use maximal enhance-
ment of these pairs by choosing them to have parallel transition
moment, the contribution is negligible.

6. Conclusions

The aim of this paper is twofold: to give an estimate of the
number of potential quenchers in the neighborhood of an excited
chromophore and to show what the spectral effects of those
quenchers are on the observed absorption spectrum.

Although a perfectly ordered dimer with a dark lower
excitonic state could potentially act as a quencher, we have
shown, on the basis of the Hertz distribution, that such pairs
are far to few in number if homogeneous and inhomogeneous
broadening are taken into account or (restricted) distributions
over the relative orientations and distances. For higher concen-
trations, where the number of potential quenchers increases, the
interaction with other nearby pigments starts to play a role, and
the probability of finding a lowest excitonic dark state again
decreases.

Spectroscopically the presence of quenching pairs will not
be noticed, at least not in ordinary absorption spectroscopy. The
results of the previous section indicate that the absorption
spectrum of a collection of pigments will mainly just be
broadened at higher concentrations because of excitonic interac-
tions, and the characteristic blue shift of the statistical pairs
contributes insufficient to give an observable effect.

Appendix

Derivation of eq 3.6.The starting point of the derivation is
expression (3.5). To make the derivation more readable, we
introduce the following dimersionless variables:

Figure 7. Absorption spectra for randomly distributed particles in a
box. The particle density is 0.16 nm-3, corresponding to a 0.27 M
solution. Transition moments and excitation energies are like those in
the other simulations. The thin solid curve is for an inhomogeneous
broadening of zero, whereas the thick solid line has an inhomogeneous
broadening of 100 cm-1. The spectra were calculated with a small
homogeneous broadening, 10 cm-1, to speed up convergence.

Figure 8. Absorption spectra for a random collection of pigments.
The dotted spectrum is the same as the one displayed in the previous
figure without inhomogeneous broadening. For the solid line spectrum,
the additional assumption was made that pigments closer than 1 nm
have parallel transition dipole moments. There is an extremely slight
decrease on the red side of the spectrum and a corresponding slight
increase on the blue side, in accordance with earlier results on statistical
pairs.
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and

where we note that|e(| e 2 and|i(| e 1. Introducingθi ) xi,
then yields

and

Equation 3.5 can then be rewritten as

where we also wrotee ) (V - ε0)/V0 and i ) I/µ2 - 1.
Equation 2.13 can be expressed as

Integration overφ is straightforward and gives

where the values ofi have to be such that the arguments of the
square roots in these expressions are positive. Outside that range,
the result is zero. Note that both terms are in fact equal: a simple
change of variables, for instancex2 f -x2 in the second term,
proves this. Subsequently, integrating overx2 gives

again with the requirement that the argument of the square root
is positive. This restricts the integration interval ofx1 for specific
values ofi ande. We also used that the integrand is symmetric
in x1.

Although it is possible to get analytical expressions in terms
of elliptic functions for this integral, these are rather complicated.
However, in view of eq A.6, we only need

To calculate the integrals in eq A.9, we rewrite the square root
in eq A.8 as a function ofi:

with

First we note that

This means that at the boundariesi ( 1 the argument of the
square root in eq A.10 is negative for all values ofx1.

Furthermoreb2 - 4ac can be written as

It is easy to see that for|e| < 1 this discriminant is larger than
zero for all values of 0< x1 < 1, whereas for 1< |e| < 2 it is
only larger than zero in the intervalxi ∈ {[(e2 - 1)/3]1/2, 1}.

Equations A.12 and A.13 imply that the effective boundaries
of the integration overi are{-b ( [(b2 - 4ac)]1/2}/2a.

Equation A.9 can now be written as

The integration overi can be performed29 and gives upon
introduction of the integration boundaries and some straight-
forward algebraic manipulations

The remaining integral can be written as

with R ) 0 if |e| < 1 andR ) [(e2 - 1)/3]1/2 if 1 < |e| < 2.
Both integrals are standard,29 and the result is given in the main
text as eqs 3.6 and 3.7.
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